UkrReferat.com
найбільша колекція україномовних рефератів

Всього в базі: 75855
останнє поновлення: 2016-12-09
за 7 днів додано 17

Реферати на українській
Реферати на російській
Українські підручники

$ Робота на замовлення
Реклама на сайті
Зворотній зв'язок

 

ПОШУК:   

реферати, курсові, дипломні:

Українські рефератиРусские рефератыКниги
НазваНевласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією(пошукова робота)
Автор
РозділМатематика, алгебра, геометрія, статистика
ФорматWord Doc
Тип документуРеферат
Продивилось2384
Скачало213
Опис
ЗАКАЧКА
Замовити оригінальну роботу

Пошукова робота на тему:

 

Невласні інтеграли з безмежними границями та з необмеженою

підінтегральною функцією.

 

План

 

Невласні інтеграли з безмежними границями

 

Невласні інтеграли від необмежених функцій

 

Невласні інтеграли та їх застосування

 

Усі поняття, зв’язані з інтегралами, що розглядалися раніше, як правило,

стосувалися інтегрованих функцій на замкненому інтервалі. Проте в

багатьох застосуваннях доводиться мати справу з інтегралами або від

необмежених функцій на нескінченному замкненому інтервалі, або з

інтегралами на нескінченному проміжку інтегрування. В останніх двох

випадках інтеграли називаються невласними.

 

1. Невласні інтеграли на необмежених інтервалах

 

 

, який називається невласним інтегралом на  необмеженому інтервалі.

Якщо величина цього інтеграла скінчена й існує, то цей інтеграл

називається  збіжним. Якщо величина цього інтеграла нескінченна або не

існує, то інтеграл називається розбіжним.  Так, наприклад,

 

  

 

Отже, дані інтеграли є збіжні.

 

 - розбіжний.

 

, який можна подати так:

 

 

Наприклад,

 

 -

 

збіжний інтеграл, а інтеграл

 

 

 

розбіжний.

 

. Його можна

 

трактувати так:

 

 

  і позначають символом

 

 

Приклад.

 

не існує,

 

 

Критерії  збіжності. Абсолютна збіжність.

 

.

 

Питання збіжності або розбіжності невласного інтеграла є досить важливим

у застосуваннях. Якщо в результаті якихось досліджень одержали невласний

інтеграл, перш ніж його обчислювати, потрібно встановити, існує він чи

ні, буде збіжним чи розбіжним. Якщо він не існує або розбіжний, то його

обчислення не потрібні. Кожен, хто візьметься за його обчислення, не

дослідивши на збіжність, марно витратить час.

 

Правильні такі твердження:

 

.

 

 не прямує ні до якої границі: інтеграл не існує.

 

 виконується нерівність

 

 

 - збіжний.

 

Д о в е д е н н я.

 

 

 тобто

 

збіжний.

 

.

 

 

Приклади. Дослідити збіжність інтегралів:

 

 

, то

 

 інтеграл розбіжний.

 

б) Інтегруванням частинами дістанемо

 

 

 

 інтеграл збіжний абсолютно, бо

 

 

 інтеграл розбіжний.

 

, виконуватиметься і дана нерівність.

 

 .

 

 заданий інтеграл розбіжний.

 

На основі теореми порівняння створено ряд конкретних критеріїв збіжності

невласних  інтегралів. Заслуговує на увагу і такий критерій збіжності:

 

50. Якщо існує границя

 

 ,

 

, а із розбіжності першого інтеграла при C > 0 випливає розбіжність

другого.

 

            Сформулюємо ще одну ознаку збіжності, незалежну від теореми

порівняння і застосовну навіть для знакозмінної підінтегральної 

функції.

 

 -

 

, то інтеграл

 

 збіжний.

 

З цим, а також з іншими критеріями збіжності інтегралів детальніше можна

ознайомитись в  кн. Фихтенгольц Г.М. Курс дифференциального и

интегрального исчисления. – Т. 3. – М., Л.: Гостехиздат, 1949.

 

2. Невласні інтеграли від необмежених функцій

 

 

 

 

, щоб виключити з розгляду точки розриву. В результаті одержимо

 

 

, то одержимо

 

 

 функція має розриви другого роду:

 

 

 

Тобто завжди можна кожний з інтегралів звести до такого вигляду, щоб

підінтегральна функція мала розрив лише на одному з кінців інтервалу

-----> Page:

0 [1]

ЗАМОВИТИ ОРИГІНАЛЬНУ РОБОТУ