UkrReferat.com
найбільша колекція україномовних рефератів

Всього в базі: 75855
останнє поновлення: 2016-12-09
за 7 днів додано 17

Реферати на українській
Реферати на російській
Українські підручники

$ Робота на замовлення
Реклама на сайті
Зворотній зв'язок

 

ПОШУК:   

реферати, курсові, дипломні:

Українські рефератиРусские рефератыКниги
НазваОцінювання парамерів моделі метoдом найменших квадратів (реферат)
Авторdimich
РозділМатематика, алгебра, геометрія, статистика
ФорматWord Doc
Тип документуРеферат
Продивилось1069
Скачало161
Опис
ЗАКАЧКА
Замовити оригінальну роботу

РЕФЕРАТ

 

на тему:

 

ОЦІНЮВАННЯ ПАРАМЕРІВ МОДЕЛІ

 

МЕТOДОМ НАЙМЕНШИХ КВАДРАТІВ

 

ОЦІНЮВАННЯ ПАРАМЕРІВ МОДЕЛІ

 

МЕТДОМ НАЙМЕНШИХ КВАДРАТІВ

 

Звернемося до прикладу простої економічної моделі, де потрібно кількісно

оцінити зв’язок між витратами на споживання та доходами сім’ї. Щоб

оцінити параметри моделі необхідно сформувати сукупність спостережень,

кожна одиниця якої характеризується витратами на споживання і доходами

сімей. Припустимо, що економетрична модель споживання будується для тієї

групи людей, в якій зі збільшенням доходів зростають витрати на

споживання.

 

Зобразимо кожну пару спостережень у системі координат, де величина

витрат на споживання відкладається на осі ординат, а доходів – на осі

абсцис. У результаті дістанемо кореляційне поле точок. (рис. 1.1.)

 

у

 

І

 

ІІ

 

ІІІ

 

х

 

Рис. 1.1. Корекційне поле точок

 

На підставі гіпотези про лінійність, зв'язку між витратами па споживання

і доходом сімей (див. Рис. 1.1), через кореляційне поле точок можна

провести безліч прямих ліній, які різняться між собою параметрами а0 і

а1. Так, якщо витрати на споживання описуватимуться прямою І, то

відхилення їх фактичних значень від розрахункових матимуть переважно

знак «мінус». Якщо вони описуватимуться прямою III, то ці відхилення

будуть переважно додатними, а якщо прямою II, то кількість від'ємних і

додатних відхилень буде приблизно однаковою. Наявність серед відхилень

переважно від'ємних чи додатних значень підтверджує, що вони мають

невипадковий характер. А це означає: певна пряма лінія неадекватно

описує фактичну залежність між витратами на споживання і доходом сімей.

Звідси постає задача — застосувати метод найменших квадратів для

оцінювання параметрів моделі, щоб відхилення фактичних витрат від

розрахункових на основі прямої мали приблизно однакову суму від'ємних і

додатних значень, а також були б найменшими. Останнє свідчитиме про те,

що розрахункові значення витрат на споживання максимально наближені до

фактичних, а це є гарантом достовірності моделі.

 

Недоцільно знаходити параметри економетричної моделі, мінімізуючи суму

лінійних відхилень фактичних витрат на споживання від розрахункових, бо

вона може дорівнювати нулю, якщо сума від'ємних і додатних відхилень

буде однаковою. Тому мінімізації підлягає сума квадратів відхилень, і

величина її залежатиме безпосередньо від розсіювання точок навколо лінії

регресії, а саме:

 

.

 

,

 

.Метод, який реалізує цей принцип, називається методом найменших

квадратів (1МНК). Зауважимо, що 1МНК можна застосовувати лише тоді, коли

залишки розподілені нормально, тобто середнє їх значення дорівнює нулю і

дисперсія — константа. Оскільки

 

 

Виконавши елементарні перетворення, дістанемо систему нормальних рівнянь

 

 

 

:

 

 

), то оцінки параметрів моделі можна знайти дещо інакше.

 

Поділивши перше рівняння системи (1.1) на п, дістанемо:

 

(1.2.)

 

 

 

, тоді

 

,

 

а відхилення фактичних значень від розрахункових будуть такі:

 

 

Сума квадратів залишків при цьому

 

 

Мінімізація цієї суми за невідомою оцінкою параметра я, дає

-----> Page:

0 [1]

ЗАМОВИТИ ОРИГІНАЛЬНУ РОБОТУ