UkrReferat.com
найбільша колекція україномовних рефератів

Всього в базі: 75834
останнє поновлення: 2016-11-29
за 7 днів додано 10

Реферати на українській
Реферати на російській
Українські підручники

$ Робота на замовлення
Реклама на сайті
Зворотній зв'язок

 

ПОШУК:   

реферати, курсові, дипломні:

Українські рефератиРусские рефератыКниги
НазваЗастосування логiки предикатiв (реферат)
Авторdimich
РозділМатематика, алгебра, геометрія, статистика
ФорматWord Doc
Тип документуРеферат
Продивилось759
Скачало163
Опис
ЗАКАЧКА
Замовити оригінальну роботу

РЕФЕРАТ

 

На тему:

 

Застосування логiки предикатiв

 

Числення предикатiв, яке не мiстить функцiональних букв i предметних

констант, називається чистим численням предикатiв. Досi мова йшла

переважно саме про чисте числення предикатiв. Такi числення мiстять

тiльки означенi вище так званi логiчнi аксiоми (або схеми аксiом).

 

Прикладнi числення (теорiї першого порядку) характеризуються тим, що в

них до логiчних аксiом додаються власнi спецiальнi аксiоми, в яких

визначають властивостi конкретних (iндивiдуальних) предикатних букв i

предметних констант з певної предметної областi.

 

Найтиповiшi приклади iндивiдуальних предикатних букв - предикати  = 

(рiвностi) i ( (порядку), а функцiональних букв - знаки арифметичних

операцiй +, (, (, / тощо та iнших популярних математичних функцiй. Як

предметнi областi найчастiше виступають множина N натуральних чисел,

множина Z цiлих чисел, множина R дiйсних чисел, булеан ((A) деякої

множини A та iн.

 

Бiльшiсть прикладних числень мiстить предикат рiвностi  =  i аксiоми, що

його визначають. Наприклад, аксiомами для рiвностi можуть бути такi:

 

E1. (x(x = x)

 

E2. (x = y)((F(x,x)(F(x,y)),

 

де F(x,y) отримано з F(x,x) шляхом замiни деяких (не обов’язково всiх)

вoоджень x на y за умови, що y у цих входженнях також залишається

вiльним.

 

Будь-яка теорiя, в якiй E1 i E2 є аксiомами або теоремами, називається

теорiєю (або численням) з рiвнiстю.

 

З аксiом E1 i E2 неважко вивести теореми, що описують основнi

властивостi рiвностi - рефлексивнiсть, симетричнiсть i транзитивнiсть:

 

(t (t = t)

 

(x = y)((y = x)

 

(x = y)(((y = z)((x = z)).

 

Аналогiчно можуть бути введенi три аксiоми, що задають бiльш загальний

предикат - предикат еквiвалентностi E(x,y):

 

Q1. (xE(x,x)

 

Q2. (x(y(E(x,y)(E(y,x))

 

Q3. (x(y(z((E(x,y)(E(y,z))(E(x,y)).

 

Iншим прикладним численням є теорiя часткового порядку, яка мiстить три

конкретнi аксiоми для предиката (:

 

O1. (x(x(x)

 

O2. (x(y(((x(y)((y(x))((x = y))

 

O3. (x(y(z((x(y)(((y(z)((x(z))).

 

Приєднавши до цих аксiом аксiому

 

O4. (x(y((x(y)((y(x)((x = y)),

 

дiстанемо теорiю лiнiйного (строгого) порядку.

 

Ще одна аксiома (аксiома щiльностi)

 

O5. (x(y((x(y)((z((x(z)((z(y)))

 

формалiзує вiдношення лiнiйного (строгого) порядку у щiльних множинах

(див.роздiл 1.8), наприклад, у множинi рацiональних або множинi дiйсних

чисел.

 

Найбiльш дослiдженою на сьогоднi формальною теорiєю, яка вiдiграє

визначальну роль для аналiзу проблеми обгрунтування засад математики, є

так звана формальна арифметика [.......].

 

У формальнiй арифметицi використовують три функцiональнi букви +, (, (.

Є також одна предикатна буква - символ бiнарного предиката рiвностi  = 

i одна предметна константа 0.

 

Дев’ять схем спецiальних аксiом задають основнi закони формальної

арифметики.

 

A1. F(0)((x(F(x)(F(x( ))(F(x) (принцип iндукцiї)

 

A2. (t1( = t2( )((t1 = t2)

 

A3. ((t1( = 0)

 

A4. (t1 = t2)(((t1 = t3)((t2 = t3))

 

A5. (t1 = t2)((t1( = t2( )

 

A6. t1+0 = t1

 

A7. t1+t2( = (t1+t2)(

 

A8. t1(0 = 0

 

A9. t1(t2( = t1(t2+t1.

 

Зауважимо, що формальна арифметика припускає так звану стандартну

-----> Page:

0 [1] [2]

ЗАМОВИТИ ОРИГІНАЛЬНУ РОБОТУ